


| Contents |                                                                    |  |  |  |  |
|----------|--------------------------------------------------------------------|--|--|--|--|
|          | Permutations                                                       |  |  |  |  |
| 5.1      | The factorial                                                      |  |  |  |  |
| 5.2      | Exponent of prime <i>p</i> in <i>n</i> !                           |  |  |  |  |
| 5.3      | Fundamental principles of counting                                 |  |  |  |  |
| 5.4      | Definition of permutation                                          |  |  |  |  |
| 5.5      | Number of permutations without repetition                          |  |  |  |  |
| 5.6      | Number of permutations with repetition                             |  |  |  |  |
| 5.7      | Conditional permutations                                           |  |  |  |  |
| 5.8      | Circular permutations                                              |  |  |  |  |
|          | Combinations                                                       |  |  |  |  |
| 5.9      | Definition                                                         |  |  |  |  |
| 5.10     | Number of combinations without repetition                          |  |  |  |  |
| 5.11     | Number of combinations with repetition and all possible selections |  |  |  |  |
| 5.12     | Conditional combinations                                           |  |  |  |  |
| 5.13     | Division into groups                                               |  |  |  |  |
| 5.14     | Derangement                                                        |  |  |  |  |
| 5.15     | Some important results for geometrical problems                    |  |  |  |  |
| 5.16     | Multinomial theorem                                                |  |  |  |  |
| 5.17     | Number of divisors                                                 |  |  |  |  |
|          | Assignment (Basic and Advance Level)                               |  |  |  |  |
|          | Answer Sheet of Assignment                                         |  |  |  |  |
|          |                                                                    |  |  |  |  |



**T**he concepts of permutations and combinations can be traced back to the advent of Jainism in India and perhaps even earlier. Among the Jains, Mahavira, (around 850 A.D.) is perhaps the world's first mathematician credited with providing the general formulae for permutations and combinations.

**B**haskaracharya (born 1114 A.D.) treated the subject matter of permutations and combinations under the name Anka Pasha in his famous work Lilavati. In addition to the general formulae for  ${}^{n}C_{r}$  and  ${}^{n}P_{r}$ already provided by Mahavira,

Outside India, the subject matter of permutations and combinations had its humble beginnings in China in the famous book I-King (Book of changes). The first book which gives a comkplete treatment of the subject matter of permutations and combinations is Ars conjectandi written by a Swiss, Jacob Bernouli (1654-1705 A.D.) posthumously published in 1713 A.D. This book contains essentially the theory of permutations and combinations as is known today.





# Permutations

# 5.1 The Factorial

**Factorial notation:** Let *n* be a positive integer. Then, the continued product of first *n* natural numbers is called factorial n, to be denoted by n ! or n. Also, we define 0 ! = 1.

when *n* is negative or a fraction, *n* ! is not defined.

Thus,  $n ! = n (n - 1) (n - 2) \dots 3.2.1$ . **Deduction:**  $n ! = n(n - 1) (n - 2) (n - 3) \dots 3.2.1$   $= n[(n - 1)(n - 2)(n - 3) \dots 3.2.1] = n[(n - 1)!]$ Thus,  $5! = 5 \times (4!), 3! = 3 \times (2!)$  and  $2! = 2 \times (1!)$ Also,  $1! = 1 \times (0!) \Longrightarrow 0! = 1$ .

# 5.2 Exponent of Prime *p* in *n* !

Let *p* be a prime number and *n* be a positive integer. Then the last integer amongst 1, 2, 3, ......(*n* – 1), *n* which is divisible by *p* is  $\left[\frac{n}{p}\right]p$ , where  $\left[\frac{n}{p}\right]$  denote the greatest integer less than or equal to  $\frac{n}{p}$ 

equal to 
$$-$$
.

For example:  $\left[\frac{10}{3}\right] = 3$ ,  $\left[\frac{12}{5}\right] = 2$ ,  $\left[\frac{15}{3}\right] = 5$  etc.

Let  $E_p(n)$  denotes the exponent of the prime p in the positive integer n. Then,

$$E_{p}(n!) = E_{p}(1.2.3...(n-1)n) = E_{p}\left(p.2p.3p...\left[\frac{n}{p}\right]p\right) = \left[\frac{n}{p}\right] + E_{p}\left(1.2.3...\left[\frac{n}{p}\right]\right)$$

[:: Remaining integers between 1 and *n* are not divisible by *p*]

Now the last integer amongst 1, 2, 3,.... $\left[\frac{n}{p}\right]$  which is divisible by p is  $\left[\frac{n/p}{p}\right] = \left[\frac{n}{p^2}\right] = \left[\frac{n}{p}\right] + E_p\left(p, 2p, 3p..., \left[\frac{n}{p^2}\right]p\right)$ because the remaining natural numbers from 1 to  $\left[\frac{n}{p}\right]$ are not divisible by  $p = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + E_p\left(1.2.3..., \left[\frac{n}{p^2}\right]\right)$ 

Get More Learning Materials Here :



# 🕀 www.studentbro.in

Similarly we get 
$$E_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots \left[\frac{n}{p^s}\right]$$

where *S* is the largest natural number. Such that  $p^{S} \le n < p^{S+1}$ .

# 5.3 Fundamental Principles of Counting

(1) Addition principle : Suppose that A and B are two disjoint events (mutually exclusive); that is, they never occur together. Further suppose that A occurs in m ways and B in n ways. Then A or B can occur in m + n ways. This rule can also be applied to more than two mutually exclusive events.

 Example: 1
 A college offers 7 courses in the morning and 5 in the evening. The number of ways a student can select exactly one course, either in the morning or in the evening

 (a) 27
 (b) 15
 (c) 12
 (d) 35

 Solution: (c)
 The student has seven choices from the morning courses out of which he can select one course in 7 ways.
 For the evening course, he has 5 choices out of which he can select one course in 5 ways.

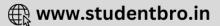
Hence he has total number of 7 + 5 = 12 choices.

(2) **Multiplication principle** : Suppose that an event X can be decomposed into two stages A and B. Let stage A occur in m ways and suppose that these stages are unrelated, in the sense that stage B occurs in n ways regardless of the outcome of stage A. Then event X occur in mn ways. This rule is applicable even if event X can be decomposed in more than two stages.

*Note* : The above principle can be extended for any finite number of operations and may be stated as under :

If one operation can be performed independently in *m* different ways and if second operation can be performed independently in *n* different ways and a third operation can be performed independently in *p* different ways and so on, then the total number of ways in which all the operations can be performed in the stated order is  $(m \times n \times p \times ....)$ 

# **Example: 2** In a monthly test, the teacher decides that there will be three questions, one from each of exercise 7, 8 and 9 of the text book. If there are 12 questions in exercise 7, 18 in exercise 8 and 9 in exercise 9, in how many ways can three questions be selected


(a) 1944 (b) 1499 (c) 4991 (d) None of these
Solution: (a) There are 12 questions in exercise 7. So, one question from exercise 7 can be selected in 12 ways. Exercise 8 contains 18 questions. So, second question can be selected in 18 ways. There are 9 questions in exercise 9. So, third question can be selected in 9 ways. Hence, three questions can be selected in 12 × 18 × 9 = 1944 ways.

# 5.4 Definition of Permutation

The ways of arranging or selecting a smaller or an equal number of persons or objects at a time from a given group of persons or objects with due regard being paid to the order of arrangement or selection are called the (different) *permutations*.

For example : Three different things *a*, *b* and *c* are given, then different arrangements which can be made by taking two things from three given things are *ab*, *ac*, *bc*, *ba*, *ca*, *cb*.





Therefore the number of permutations will be 6.

# 5.5 Number of Permutations without Repetition

(1) Arranging n objects, taken r at a time equivalent to filling r places from n things

*r*-places : <u>r</u> n – (r-Number of choices : The number of ways of arranging = The number of ways of filling *r* places.  $= n(n-1)(n-2)\dots(n-r+1) = \frac{n(n-1)(n-2)\dots(n-r+1)((n-r)!)}{(n-r)!} = \frac{n!}{(n-r)!} = n!$ (2) The number of arrangements of *n* different objects taken all at a time =  ${}^{n}P_{n} = n!$  ${}^{n}P_{0} = \frac{n!}{n!} = 1; {}^{n}P_{r} = n. {}^{n-1}P_{r-1}$ Note : 🗆  $\Box 0!=1; \frac{1}{(-r)!}=0 \text{ or } (-r)!=\infty \ (r \in N)$ If  ${}^{n}P_{4} : {}^{n}P_{5} = 1 : 2$ , then n =Example: 3 [MP PET 1987; Rajasthan PET 1996] (a) 4 (c) 6 (d) 7  $\frac{{}^{n}P_{4}}{{}^{n}P_{5}} = \frac{1}{2} \implies \frac{n!}{(n-4)!} \times \frac{(n-5)!}{n!} = \frac{1}{2} \implies n-4 = 2 \implies n=6.$ **Solution:** (c) Example: 4 In a train 5 seats are vacant then how many ways can three passengers sit [Rajasthan PET 1985; MP PET 2003] (a) 20 (d) 10 (c) 60 **Solution:** (c) Number of ways are =  ${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{120}{2} = 60$ . Example: 5 How many words comprising of any three letters of the word "UNIVERSAL" can be formed (a) 504 (b) 405 (d) 450 (c) 540 Required numbers of words =  ${}^{9}P_3 = \frac{9!}{(9-3)!} = \frac{9!}{6!} = 504$ . **Solution:** (a) How many numbers of five digits can be formed from the numbers 2, 0, 4, 3, 8 when repetition of **Example: 6** digit is not allowed [MP PET 2000] (a) 96 (b) 120 (c) 144 (d) 14 Solution: (a) Given numbers are 2, 0, 4, 3, 8 Numbers can be formed = {Total – Those beginning with O}  $= \{5! - 4!\} = 120 - 24 = 96.$ How many numbers can be made with the help of the digits 0, 1, 2, 3, 4, 5 which are greater than Example: 7 3000 (repetition is not allowed) (c) 1380 (a) 180 (b) 360 (d) 1500 **Solution:** (c) All the 5 digit numbers and 6 digit numbers are greater than 3000. Therefore number of 5 digit numbers  $= {}^{6}P_{5} - {}^{5}P_{5} = 600$  . {Since the case that 0 will be at ten thousand place should be omit}. Similarly number of 6 digit numbers 6 ! - 5 ! = 600.

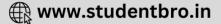
CLICK HERE

≫

🕀 www.studentbro.in

Now the numbers of 4 digit numbers which are greater than 3000, having 3, 4 or 5 at first place, this can be done in 3 ways and remaining 3 digit may be filled from remaining 5 digits *i.e.*, required number of 4 digit numbers are  ${}^{5}P_{3} \times 3 = 180$ .

Hence total required number of numbers = 600 + 600 + 180 = 1380.


# 5.6 Number of Permutations with Repetition

(1) The number of permutations (arrangements) of n different objects, taken r at a time, when each object may occur once, twice, thrice,.....upto r times in any arrangement = The number of ways of filling r places where each place can be filled by any one of n objects.

|                                                          | number of ways of fining / places where each place can be fined by any one of <i>n</i> objects.                                                        |                                        |                                                     |                                   |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|-----------------------------------|--|--|--|--|
| r - places : 1 2 3 4 $r$                                 |                                                                                                                                                        |                                        |                                                     |                                   |  |  |  |  |
| Numbe                                                    | Number of choices : n n n n n                                                                                                                          |                                        |                                                     |                                   |  |  |  |  |
| The nu                                                   | The number of permutations = The number of ways of filling r places = $(n)^r$                                                                          |                                        |                                                     |                                   |  |  |  |  |
| (2) The                                                  | e number of arrange                                                                                                                                    | ments that can be                      | formed using $n$ objective                          | ects out of which $p$ are         |  |  |  |  |
| identical (a                                             | nd of one kind) $q$ are                                                                                                                                | identical (and of a                    | nother kind), r are io                              | lentical (and of another          |  |  |  |  |
| kind) and the rest are distinct is $\frac{n!}{p!q!r!}$ . |                                                                                                                                                        |                                        |                                                     |                                   |  |  |  |  |
| Example: 8                                               | The number of arrangem                                                                                                                                 | ent of the letters of the              | e word "CALCUTTA"                                   | [MP PET 1984]                     |  |  |  |  |
|                                                          | (a) 2520                                                                                                                                               | (b) 5040                               | (c) 10080                                           | (d) 40320                         |  |  |  |  |
| Solution: (b)                                            | Required number of way                                                                                                                                 | $s = \frac{8!}{2!2!2!} = 5040$ . [sinc | e here 2 <i>C</i> 's, 2 <i>T's</i> and 2 <i>A's</i> | ]                                 |  |  |  |  |
| Example: 9                                               | The number of 5 digit tel                                                                                                                              | ephone numbers havin                   | g at least one of their digi                        | ts repeated is                    |  |  |  |  |
|                                                          | (a) 90,000                                                                                                                                             | (b) 100,000                            | (c) 30,240                                          | (d) 69,760                        |  |  |  |  |
| Solution: (d)                                            | Using the digits 0, 1, 2,                                                                                                                              | ,9 the number of five                  | e digit telephone numbers                           | , which can be formed is $10^5$ . |  |  |  |  |
|                                                          | (since repetition is allowed)                                                                                                                          |                                        |                                                     |                                   |  |  |  |  |
|                                                          | The number of five digit telephone numbers which have none of the digits repeated = ${}^{10}P_5 = 30240$                                               |                                        |                                                     |                                   |  |  |  |  |
|                                                          | $\therefore$ The required number of telephone numbers = $10^5 - 30240 = 69760$ .                                                                       |                                        |                                                     |                                   |  |  |  |  |
| Example: 10<br>1986]                                     | How many words can be                                                                                                                                  | made from the letters                  | of the word 'COMMITTEE                              | ' [MP PET 2002; RPET              |  |  |  |  |
|                                                          | (a) $\frac{9!}{(2!)^2}$                                                                                                                                | (b) $\frac{9!}{(2!)^3}$                | (c) $\frac{9!}{2!}$                                 | (d) 9 !                           |  |  |  |  |
| Solution: (b)                                            | Number of words = $\frac{9!}{2!2!2!} = \frac{9!}{(2!)^3}$ [Since here total number of letters is 9 and 2 <i>M</i> 's, 2 <i>T</i> 's and 2 <i>E</i> 's] |                                        |                                                     |                                   |  |  |  |  |
| 5.7 Conditi                                              | 5.7 Conditional Permutations                                                                                                                           |                                        |                                                     |                                   |  |  |  |  |
|                                                          |                                                                                                                                                        | s of <i>n</i> dissimilar t             | things taken r at a t                               | time when <i>p</i> particular     |  |  |  |  |
|                                                          | -                                                                                                                                                      |                                        | inings taken i at a                                 | time when p particular            |  |  |  |  |
| things always occur = ${}^{n-p}C_{r-p} r!$               |                                                                                                                                                        |                                        |                                                     |                                   |  |  |  |  |

(2) Number of permutations of *n* dissimilar things taken *r* at a time when *p* particular things never occur  $= {}^{n-p}C_r r!$ 

Get More Learning Materials Here : 🗾



(3) The total number of permutations of *n* different things taken not more than *r* at a time, when each thing may be repeated any number of times, is  $\frac{n(n^r - 1)}{n - 1}$ .

(4) Number of permutations of *n* different things, taken all at a time, when *m* specified things always come together is  $m! \times (n - m + 1)!$ 

(5) Number of permutations of *n* different things, taken all at a time, when *m* specified things never come together is  $n!-m! \times (n-m+1)!$ 

(6) Let there be *n* objects, of which *m* objects are alike of one kind, and the remaining (n-m) objects are alike of another kind. Then, the total number of mutually distinguishable permutations that can be formed from these objects is  $\frac{n!}{(m!) \times (n-m)!}$ .

*Note* :  $\Box$  The above theorem can be extended further *i.e.*, if there are *n* objects, of which  $p_1$  are alike of one kind;  $p_2$  are alike of another kind;  $p_3$  are alike of  $3^{rd}$  kind;.....:  $p_r$  are alike of *r*<sup>th</sup> kind such that  $p_1 + p_2 + \dots + p_r = n$ ; then the number of permutations of these *n* objects is

 $\frac{n!}{(p_1!)\times(p_2!)\times\ldots\times(p_r!)}.$ 

# Important Tips

- *Gap method* : Suppose 5 males A, B, C, D, E are arranged in a row as  $\times A \times B \times C \times D \times E \times$ . There will be six gaps between these five. Four in between and two at either end. Now if three females P, Q,R are to be arranged so that no two are together we shall use gap method i.e., arrange them in between these 6 gaps. Hence the answer will be  ${}^{6}P_{3}$ .
- Together : Suppose we have to arrange 5 persons in a row which can be done in 5 ! = 120 ways. But if two particular persons are to be together always, then we tie these two particular persons with a string. Thus we have 5 2 + 1 (1 corresponding to these two together) = 3 +1 = 4 units, which can be arranged in 4! ways. Now we loosen the string and these two particular can be arranged in 2 ! ways. Thus total arrangements = 24 × 2 = 48.

Never together = Total - Together = 120 - 48 = 72.

| -                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                | •                                                             | ways. The number of such   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|--|--|--|
|                                                                                                                                      | arrangement in which two vowels are not adjacent to each other is<br>[EAMCET 1987; DCE 2000]                                         |                                                                                                                                                                |                                                               |                            |  |  |  |
|                                                                                                                                      | (a) 360                                                                                                                              | (b) 114                                                                                                                                                        | (c) 72                                                        | (d) 54                     |  |  |  |
| Solution: (c)                                                                                                                        | First we arrange 3 conso                                                                                                             | onants in 3 ! ways and t                                                                                                                                       | then at four places (two p                                    | laces between them and two |  |  |  |
|                                                                                                                                      | places on two sides) 3 vo                                                                                                            | owels can be placed in $4$                                                                                                                                     | $P_3 \times \frac{1}{2!}$ ways.                               |                            |  |  |  |
|                                                                                                                                      | Hence the required ways                                                                                                              | $S = 3! \times {}^{4}P_{3} \times \frac{1}{2!} = 72$ .                                                                                                         |                                                               |                            |  |  |  |
| <b>Example: 12</b> The number of words which can be made out of the letters of the word 'MOBILE' when co always occupy odd places is |                                                                                                                                      |                                                                                                                                                                |                                                               |                            |  |  |  |
|                                                                                                                                      | (a) 20                                                                                                                               | (b) 36                                                                                                                                                         | (c) 30                                                        | (d) 720                    |  |  |  |
| Example: 12                                                                                                                          | First we arrange 3 conso<br>places on two sides) 3 vo<br>Hence the required ways<br>The number of words w<br>always occupy odd place | points in 3 ! ways and t<br>owels can be placed in <sup>4</sup><br>$s = 3 ! \times {}^{4}P_{3} \times \frac{1}{2!} = 72$ .<br>Thich can be made out of<br>s is | then at four places (two p<br>$P_3 \times \frac{1}{2!}$ ways. | laces between them and a   |  |  |  |

**CLICK HERE** 

🕀 www.studentbro.in

| <pre>three place place The t place The t Fxample: 13 First for the firs</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e odd places we have<br>es we have to fix up<br>cotal number of way<br>number of 4 digit of<br>ber contain digit 1 i<br>225<br>r fixing 1 at one po<br>se fourth digit is zer<br>otal ways = ${}^{7}P_{3} - {}^{6}P_{3}$<br>en and <i>n</i> women ar<br>ber of ways in whice<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>to the fundamental the<br>e letters of the wor<br>a dictionary, then to<br>224<br>ds starting from <i>KA</i><br>ds starting from <i>KN</i> | number that can be for<br>s<br>(b) 1252<br>sition out of 4 places, 3<br>ro, so such type of ways<br>$_2 = 480$ .<br>e to be seated in a row<br>h they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>heorem, the required number<br>d 'KRISNA' are arrangen<br>the rank of the word 'KB<br>(b) 341<br>tre 5 ! = 120;<br>are 4 ! = 24;                                                     | s which can be of<br>s which can be of<br>rmed from the of<br>(c) 1522<br>3 places can be<br>$s = {}^{6}P_{2}$<br>c, so that no two<br>(c) $\frac{(m-1)!(m}{(m-n+1)!}$<br>ce $n < m$ and no<br>es in which $n$ we<br>umber of arrange<br>d in all possible<br>RISNA' is<br>(c) 359<br>Words startin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | done in ${}^{3}P_{3}$<br>done in ${}^{3}P_{3}$<br>digits 0, 1,<br>filled by ${}^{7}P_{4}$<br>b women sit<br>$\frac{+1)!}{1)!}$<br>two women<br>omen can be<br>gement = $m$<br>e ways and $r$<br>ng from $I$ are | ways. Now rem<br>ways.<br>2, 3, 4, 5, 6, 7 s<br>(d) 480<br>$P_3$ ways. But so<br>(d) None of the<br>can sit together<br>can sit together<br>$1^{m+1}P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the | aining three<br>so that each<br>me numbers<br>> $n$ , then the<br>ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>${}^{1})!$<br>${}^{1}$ . |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Example: 13The formula<br>number<br>(a) 1Solution: (d)After<br>whose<br>∴ To<br>mmde<br>numberExample: 14mmde<br>number<br>(a) 1Solution: (a)First<br>of the<br>∴ ByExample: 15If the<br>as in<br>(a) 3Solution: (a)Word<br>Word<br>Word<br>word<br>end word<br>end wordSolution: (a)(a) 3<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>word<br>end word<br>end word<br>end word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | total number of way<br>number of 4 digit of<br>ber contain digit 1 i<br>225<br>fixing 1 at one po<br>se fourth digit is zero<br>otal ways = ${}^{7}P_{3} - {}^{6}P_{3}$<br>en and <i>n</i> women arr<br>ber of ways in whice<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>to the fundamental the<br>e letters of the worr<br>a dictionary, then to<br>224<br>ds starting from <i>K</i> A<br>ds starting from <i>K</i> A                                              | ys = ${}^{3}P_{3} \times {}^{3}P_{3} = 36$ .<br>number that can be for<br>s<br>(b) 1252<br>sition out of 4 places, 1<br>ro, so such type of ways<br>${}_{2} = 480$ .<br>e to be seated in a row<br>h they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>heorem, the required number<br>d 'KRISNA' are arrangen<br>the rank of the word 'KE<br>(b) 341<br>ure 5 ! = 120;<br>are 4 ! = 24; | rmed from the ormed from the ormed from the ormed from the ormed for the formed from the formed for the formed formed formed for the formed formed formed for the formed                                                                                                                                                                                                                                                      | digits 0, 1,<br>filled by 7<br>women sit<br>$\frac{+1}{1}$<br>two women<br>omen can be<br>gement = m<br>e ways and 5<br>ng from I are                                                                           | 2, 3, 4, 5, 6, 7 s<br>(d) 480<br>$P_3$ ways. But so<br>t together. If $m >$<br>(d) None of the<br>can sit together<br>t arranged in $^{m+1}$<br>$p_n = \frac{m!(m+1)}{(m-n+1)}$<br>these words are<br>(d) None of the      | me numbers<br>> n, then the<br>ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>${}^{1})!$<br>1)!<br>$\cdot$<br>written out                 |  |  |  |
| Example: 13The innum<br>num<br>(a) 1Solution: (d)After<br>whose<br>$\therefore$ To<br>m mode<br>num<br>(a) $\frac{1}{2}$ Example: 14m mode<br>num<br>(a) $\frac{1}{2}$ Solution: (a)First<br>of the<br>$\therefore$ By<br>Example: 15Example: 15If the<br>as in<br>(a) 3Solution: (a)Word<br>Word<br>Word<br>Word<br>Word<br>word<br>end word<br>end word<br>solution: (a)Example: 16(a) 3<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word <b< td=""><td>number of 4 digit is<br/>ber contain digit 1 is<br/>225<br/>fixing 1 at one po<br/>se fourth digit is zero<br/>otal ways = <math>{}^7P_3 - {}^6P_3</math><br/>en and <i>n</i> women ar<br/>ber of ways in whice<br/><math>\frac{m!(m+1)!}{(m-n+1)!}</math><br/>arrange <i>m</i> men, in<br/>e <i>m</i> ! arrangement<br/>to the fundamental the<br/>e letters of the wor<br/>a dictionary, then<br/>324<br/>ds starting from <i>K</i>A<br/>ds starting from <i>K</i>A</td><td>number that can be for<br/>s<br/>(b) 1252<br/>sition out of 4 places, 3<br/>ro, so such type of ways<br/><math>_2 = 480</math>.<br/>e to be seated in a row<br/>h they can be seated is<br/>(b) <math>\frac{m!(m-1)!}{(m-n+1)!}</math><br/>a row in <i>m</i> ! ways. Since<br/>, there are (<i>m</i> + 1) place<br/>heorem, the required number<br/>d 'KRISNA' are arrangen<br/>the rank of the word 'KB<br/>(b) 341<br/>tre 5 ! = 120;<br/>are 4 ! = 24;</td><td>(c) 1522<br/>3 places can be<br/><math>s = {}^6P_2</math><br/>5, so that no two<br/>(c) <math>\frac{(m-1)!(m)}{(m-n+1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m</math></td><td>filled by <sup>7</sup><br/>to women sit<br/><math>\frac{+1}{1}</math><br/>two women<br/>omen can be<br/>gement = m<br/>e ways and the<br/>ng from I are</td><td>(d) 480<br/><math>P_3</math> ways. But some<br/>to together. If <math>m &gt; 1</math><br/>(d) None of the<br/>a can sit together<br/>the arranged in <math>m+1</math><br/><math>m+1 P_n = \frac{m!(m+1)!}{(m-n+1)!}</math><br/>these words are<br/>(d) None of the</td><td>me numbers<br/>&gt; n, then the<br/>ese<br/>r, in any one<br/><math>{}^{1}P_{n}</math> ways.<br/><math>{}^{1})!</math><br/>1)!<br/><math>\cdot</math><br/>written out</td></b<> | number of 4 digit is<br>ber contain digit 1 is<br>225<br>fixing 1 at one po<br>se fourth digit is zero<br>otal ways = ${}^7P_3 - {}^6P_3$<br>en and <i>n</i> women ar<br>ber of ways in whice<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>to the fundamental the<br>e letters of the wor<br>a dictionary, then<br>324<br>ds starting from <i>K</i> A<br>ds starting from <i>K</i> A                                                                                 | number that can be for<br>s<br>(b) 1252<br>sition out of 4 places, 3<br>ro, so such type of ways<br>$_2 = 480$ .<br>e to be seated in a row<br>h they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>heorem, the required number<br>d 'KRISNA' are arrangen<br>the rank of the word 'KB<br>(b) 341<br>tre 5 ! = 120;<br>are 4 ! = 24;                                                     | (c) 1522<br>3 places can be<br>$s = {}^6P_2$<br>5, so that no two<br>(c) $\frac{(m-1)!(m)}{(m-n+1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m$                                                                                                                                                                                                                                        | filled by <sup>7</sup><br>to women sit<br>$\frac{+1}{1}$<br>two women<br>omen can be<br>gement = m<br>e ways and the<br>ng from I are                                                                           | (d) 480<br>$P_3$ ways. But some<br>to together. If $m > 1$<br>(d) None of the<br>a can sit together<br>the arranged in $m+1$<br>$m+1 P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the                | me numbers<br>> n, then the<br>ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>${}^{1})!$<br>1)!<br>$\cdot$<br>written out                 |  |  |  |
| numin         (a) 1         Solution: (d)       After         whose         ∴ To         Example: 14       m mode         (a) 1         Solution: (a)       First         Solution: (a)       First         Solution: (a)       If the         as in       (a) 3         Solution: (a)       Word         Example: 16       We at word         Solution: (a)       (a) 3         Solution: (a)       (a) 3         Solution: (a)       (a) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ber contain digit 1 i<br>225<br>fixing 1 at one po<br>se fourth digit is zer<br>otal ways = ${}^{7}P_{3} - {}^{6}P_{3}$<br>en and <i>n</i> women ar<br>ber of ways in whice<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>the fundamental the<br>e letters of the wor<br>a dictionary, then the<br>starting from <i>K</i> A<br>ds starting from <i>K</i> N                                                                                                            | s<br>(b) 1252<br>sition out of 4 places, 3<br>ro, so such type of ways<br>$a^2 = 480$ .<br>the to be seated in a row<br>the they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>there are ( <i>m</i> + 1) place<br>theorem, the required number<br>of 'KRISNA' are arrangen<br>the rank of the word 'KR<br>(b) 341<br>there 5 ! = 120;<br>are 4 ! = 24;                                                                        | (c) 1522<br>3 places can be<br>$s = {}^6P_2$<br>5, so that no two<br>(c) $\frac{(m-1)!(m)}{(m-n+1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m$                                                                                                                                                                                                                                        | filled by <sup>7</sup><br>to women sit<br>$\frac{+1}{1}$<br>two women<br>omen can be<br>gement = m<br>e ways and the<br>ng from I are                                                                           | (d) 480<br>$P_3$ ways. But some<br>to together. If $m > 1$<br>(d) None of the<br>a can sit together<br>the arranged in $m+1$<br>$m+1 P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the                | me numbers<br>> n, then the<br>ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>${}^{1})!$<br>1)!<br>$\cdot$<br>written out                 |  |  |  |
| Solution: (d) After<br>whose<br>To<br>m me<br>number<br>(a) -<br>(b) -<br>Solution: (a) First<br>of the<br>By<br>Example: 15 If the<br>as in<br>(a) 3<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Mord<br>Mord<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>Mord<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fixing 1 at one po<br>se fourth digit is zero<br>ptal ways = ${}^{7}P_{3} - {}^{6}P_{3}$<br>en and <i>n</i> women are<br>ber of ways in whice<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>to the fundamental the<br>e letters of the wor<br>a dictionary, then<br>a dictionary, then<br>a starting from <i>K</i> and<br>dis starting from <i>K</i> A                                                                                                                | sition out of 4 places, 3<br>ro, so such type of ways<br>$a_2 = 480$ .<br>e to be seated in a row<br>h they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>heorem, the required nu<br>d 'KRISNA' are arrange<br>the rank of the word 'KR<br>(b) 341<br>ure 5 ! = 120;<br>are 4 ! = 24;                                                                                                    | 3 places can be<br>$s = {}^{6}P_{2}$<br>5, so that no two<br>(c) $\frac{(m-1)!(m)}{(m-n+1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m$                                                                                                                                                                                                                                          | b women sit<br>$\frac{+1)!}{1)!}$<br>two women<br>omen can be<br>gement = m<br>e ways and the<br>ng from I are                                                                                                  | P <sub>3</sub> ways. But solution<br>together. If $m > 1$<br>(d) None of the<br>e arranged in $m+1$<br>! $m+1$ $P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the                                     | > <i>n</i> , then the<br>ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>${}^{1})!$<br>${}^{1}$ .                                          |  |  |  |
| Example: 14 Solution: (a) Example: 15 Example: 15 If the as in (a) 3 Solution: (a) Word Word Word Word Word Word Word Word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | se fourth digit is zero<br>otal ways = ${}^{7}P_{3} - {}^{6}P_{3}$<br>en and <i>n</i> women arr<br>ber of ways in whice<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>to the fundamental the<br>e letters of the work<br>a dictionary, then the<br>starting from <i>A</i> and<br>dis starting from <i>KA</i><br>dis starting from <i>KN</i>                                                                                                                           | ro, so such type of ways<br>$a_2 = 480$ .<br>e to be seated in a row<br>h they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>heorem, the required number<br>d 'KRISNA' are arranged<br>the rank of the word 'KH<br>(b) 341<br>are 5 ! = 120;<br>are 4 ! = 24;                                                                                                                            | $S = {}^{6}P_{2}$<br>(c) $\frac{(m-1)!(m)}{(m-n+1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-$                                                                                                                                                                                                                                             | b women sit<br>$\frac{+1)!}{1)!}$<br>two women<br>omen can be<br>gement = m<br>e ways and the<br>ng from I are                                                                                                  | (d) None of the<br>can sit together<br>e arranged in $^{m+1}$<br>! $^{m+1}P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the                                                                           | > <i>n</i> , then the<br>ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>${}^{1})!$<br>${}^{1}$ .                                          |  |  |  |
| $\therefore$ To<br>$m$ me<br>numberExample: 14 $m$ me<br>number(a) $\frac{1}{6}$ Solution: (a)First<br>of the<br>$\therefore$ ByExample: 15If the<br>as in<br>(a) 3Solution: (a)Word<br>Word<br>Word<br>Word<br>Word<br>end word<br>end word<br>solution: (a)Example: 16We a<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>end word<br>word<br>end word<br>word<br>end word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otal ways = ${}^{7}P_{3} - {}^{6}P_{2}$<br>en and <i>n</i> women are<br>ber of ways in whice<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br><i>v</i> the fundamental the<br>e letters of the wor<br>a dictionary, then<br>324<br>ds starting from <i>A</i> and<br>ds starting from <i>KA</i>                                                                                                                                                                           | e to be seated in a row<br>h they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>heorem, the required number<br>d 'KRISNA' are arranged<br>the rank of the word 'KR<br>(b) 341<br>are 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                         | (c) $\frac{(m-1)!(m)}{(m-n+1)!}$<br>(c) $\frac{(m-1)!(m)}{(m-n+1)!}$<br>(c) $m$ and no<br>(c) $m$ and no<br>(c) $m$ and $m$<br>(c) $m$ and $m$ | $\frac{+1)!}{1)!}$ two women<br>omen can be<br>gement = m<br>e ways and the<br>ng from I are                                                                                                                    | (d) None of the<br>a can sit together<br>e arranged in $^{m+1}$<br>! $^{m+1}P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the                                                                         | ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>$\frac{1)!}{1)!}$ .                                                                        |  |  |  |
| Example: 14 m manual (a) - (a) - (b) (a) Solution: (a) First of the By Example: 15 If the as in (a) 3 Solution: (a) Word Word Word Word Word Word Word Word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | en and <i>n</i> women ar<br>ber of ways in which<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>to the fundamental the<br>e letters of the wor<br>a dictionary, then<br>324<br>ds starting from <i>A</i> and<br>ds starting from <i>KA</i>                                                                                                                                                                                                                             | te to be seated in a row<br>th they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>theorem, the required number<br>d 'KRISNA' are arranged<br>the rank of the word 'KR<br>(b) 341<br>tre 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                      | (c) $\frac{(m-1)!(m)}{(m-n+1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-$                                                                                                                                                                                                                                                | $\frac{+1)!}{1)!}$ two women<br>omen can be<br>gement = m<br>e ways and the<br>ng from I are                                                                                                                    | (d) None of the<br>a can sit together<br>e arranged in $^{m+1}$<br>! $^{m+1}P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the                                                                         | ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>$\frac{1)!}{1)!}$ .                                                                        |  |  |  |
| numl<br>(a) (<br>(a) (<br>(a) (<br>(a) (<br>(a) (<br>(a) 3)<br>(a) 3<br>(a) 3<br>(a) 3<br>(b) 4<br>(c) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ber of ways in which<br>$\frac{m!(m+1)!}{(m-n+1)!}$<br>arrange <i>m</i> men, in<br>the <i>m</i> ! arrangement<br>with fundamental the<br>the letters of the work<br>a dictionary, then the<br>starting from <i>A</i> and<br>a starting from <i>KA</i><br>a starting from <i>KN</i>                                                                                                                                                                                                                                | th they can be seated is<br>(b) $\frac{m!(m-1)!}{(m-n+1)!}$<br>a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>theorem, the required number<br>d 'KRISNA' are arranged<br>the rank of the word 'KH<br>(b) 341<br>are 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                                                  | (c) $\frac{(m-1)!(m)}{(m-n+1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-1)!(m-$                                                                                                                                                                                                                                                | $\frac{+1)!}{1)!}$ two women<br>omen can be<br>gement = m<br>e ways and the<br>ng from I are                                                                                                                    | (d) None of the<br>a can sit together<br>e arranged in $^{m+1}$<br>! $^{m+1}P_n = \frac{m!(m+1)!}{(m-n+1)!}$<br>these words are<br>(d) None of the                                                                         | ese<br>r, in any one<br>${}^{1}P_{n}$ ways.<br>$\frac{1)!}{1)!}$ .                                                                        |  |  |  |
| Solution: (a)First<br>of the<br>∴ ByExample: 15If the<br>as in<br>(a) 3Solution: (a)Word<br>Word<br>Word<br>Word<br>Word<br>Bexample: 16Example: 16We a<br>word<br>end word<br>word<br>end word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arrange <i>m</i> men, in<br>e <i>m</i> ! arrangement<br>t the fundamental th<br>e letters of the wor<br>a dictionary, then<br>224<br>ls starting from <i>A</i> a<br>ls starting from <i>KA</i><br>ls starting from <i>KN</i>                                                                                                                                                                                                                                                                                      | a row in <i>m</i> ! ways. Since<br>, there are ( <i>m</i> + 1) place<br>heorem, the required nu<br>d 'KRISNA' are arrange<br>the rank of the word 'K<br>(b) 341<br>are 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                                                                                                                        | te n < m and no<br>es in which n we<br>umber of arrang<br>d in all possible<br>RISNA' is<br>(c) 359<br>Words startin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | two women<br>omen can be<br>gement = <i>m</i><br>e ways and<br>ng from <i>I</i> are                                                                                                                             | a can sit together<br>e arranged in <sup>m+1</sup><br>! <sup>m+1</sup> $P_n = \frac{m!(m+1)}{(m-n+1)}$<br>these words are<br>(d) None of the                                                                               | r, in any one<br>${}^{1}P_{n}$ ways.<br>$\frac{1)!}{1)!}$ .<br>written out                                                                |  |  |  |
| of the<br>∴ By<br>Example: 15 If the<br>as in<br>(a) 3<br>Solution: (a) Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>Model<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e <i>m</i> ! arrangement<br>the fundamental the<br>e letters of the wor<br>a dictionary, then<br>224<br>ls starting from <i>A</i> a<br>ls starting from <i>KA</i><br>ls starting from <i>KN</i>                                                                                                                                                                                                                                                                                                                   | , there are ( <i>m</i> + 1) place<br>heorem, the required nu<br>d 'KRISNA' are arrange<br>the rank of the word 'K<br>(b) 341<br>ure 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                                                                                                                                                           | es in which <i>n</i> wo<br>umber of arrang<br>d in all possible<br>RISNA' is<br>(c) 359<br>Words startir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | omen can be<br>gement = <i>m</i><br>e ways and<br>ng from <i>I</i> are                                                                                                                                          | e arranged in <sup>m+1</sup><br>! <sup>m+1</sup> $P_n = \frac{m!(m+1)}{(m-n+1)}$<br>these words are<br>(d) None of the                                                                                                     | $\frac{1}{1}P_n$ ways.<br>$\frac{1}{1}}{1}$ .                                                                                             |  |  |  |
| Example: 15If the<br>as in<br>(a) 3Solution: (a)Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Word<br>Hend<br>Solution: (a)Example: 16We a<br>word<br>end word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br>word<br><td>e letters of the wor<br/>a dictionary, then<br/>324<br/>Is starting from <i>A</i> a<br/>Is starting from <i>KA</i><br/>Is starting from <i>KN</i></td> <td>d 'KRISNA' are arrange<br/>the rank of the word 'K<br/>(b) 341<br/>are 5 ! = 120;<br/>are 4 ! = 24;</td> <td>d in all possible<br/>RISNA' is<br/>(c) 359<br/>Words startir</td> <td>e ways and<br/>ng from <i>I</i> are</td> <td>(d) None of the</td> <td>written out</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e letters of the wor<br>a dictionary, then<br>324<br>Is starting from <i>A</i> a<br>Is starting from <i>KA</i><br>Is starting from <i>KN</i>                                                                                                                                                                                                                                                                                                                                                                      | d 'KRISNA' are arrange<br>the rank of the word 'K<br>(b) 341<br>are 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                                                                                                                                                                                                                           | d in all possible<br>RISNA' is<br>(c) 359<br>Words startir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e ways and<br>ng from <i>I</i> are                                                                                                                                                                              | (d) None of the                                                                                                                                                                                                            | written out                                                                                                                               |  |  |  |
| as in<br>(a) 3<br>Solution: (a) Word<br>Word<br>Word<br>Hend<br>Example: 16 We a<br>word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a dictionary, then<br>24<br>ls starting from <i>A</i> a<br>ls starting from <i>KA</i><br>ls starting from <i>KN</i>                                                                                                                                                                                                                                                                                                                                                                                               | the rank of the word 'K'<br>(b) 341<br>are 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                                                                                                                                                                                                                                                    | RISNA' is<br>(c) 359<br>Words startir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng from <i>I</i> are                                                                                                                                                                                            | (d) None of the                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| <ul> <li>(a) 3</li> <li>Solution: (a) Word Word Word Word Word Word Word Word</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 224<br>ls starting from <i>A a</i><br>ls starting from <i>KA</i><br>ls starting from <i>KN</i>                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 341<br>are 5 ! = 120;<br>are 4 ! = 24;                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) 359<br>Words startir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                               |                                                                                                                                                                                                                            | se                                                                                                                                        |  |  |  |
| Solution: (a) Word<br>Word<br>Word<br>Word<br>Example: 16 We a<br>word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ls starting from <i>A</i> a<br>ls starting from <i>KA</i><br>ls starting from <i>KN</i>                                                                                                                                                                                                                                                                                                                                                                                                                           | are 4 ! = 24;                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Words startir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                               |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| Word<br>Word<br>Word<br>Example: 16 We a<br>word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ls starting from KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Words startir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                 | Words starting from A are $5 ! = 120$ ;Words starting from I are $5 ! = 120$                                                                                                                                               |                                                                                                                                           |  |  |  |
| Word<br>Word<br>Hence<br>Example: 16 We a<br>word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aro 4 = 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Words starting from KA are $4 != 24$ ;Words starting from KI are $4 != 24$ Words starting from KN are $4 != 24$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| Word<br>Hence<br>Example: 16 We a<br>word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ls starting from KR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Words starting from KN are 4 != 24;Words starting from KRA are 3 != 6Words starting from KRIA are 2 != 2;Words starting from KRIN are 2 != 2                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| Example: 16 Hence<br>We a<br>word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | la starting from VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                               | N are 2 ! = 2<br>SNA are 1 ! = 1                                                                                                                                                                                           |                                                                                                                                           |  |  |  |
| Example: 16 We a<br>word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ls starting from <i>KR</i><br>the rank of the word                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | words starti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                 | SWA are 1: -1                                                                                                                                                                                                              |                                                                                                                                           |  |  |  |
| word<br>end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt words with the lett                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ers of the word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d 'INTEGER                                                                                                                                                                                                      | '. Let $m_1$ be the                                                                                                                                                                                                        | e number of                                                                                                                               |  |  |  |
| end v<br>(a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | words in which I and N are never together, and $m_2$ be the number of words which begin with I and                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| (a) 3<br>Solution: (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | end with <i>R</i> . Then $m_1/m_2$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| <b>Solution:</b> (a) We h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            | [AMU 2000]                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                 | (d) 180                                                                                                                                                                                                                    |                                                                                                                                           |  |  |  |
| in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ave 5 letters other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | than 'I' and 'N' of whic                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ch two are ident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tical ( <i>E</i> 's). V                                                                                                                                                                                         | We can arrange t                                                                                                                                                                                                           | these letters                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in a line in $\frac{5!}{2!}$ ways. In any such arrangement ' <i>I</i> ' and ' <i>N</i> ' can be placed in 6 available gaps in ${}^6P_2$                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| ways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ways, so required number = $\frac{5!}{2!}^6 P_2 = m_1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| Now $\frac{5!}{2!} = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I and end with R then                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the remaining l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | etters are 5                                                                                                                                                                                                    | . So, total numbe                                                                                                                                                                                                          | er of ways =                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{2} = \frac{5!}{2!} \cdot \frac{6!}{4!} \cdot \frac{2!}{5!} = 30$ .                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| are t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $m_2$ 2! 4! 5!<br>An <i>n</i> digit number is a positive number with exactly <i>n</i> digits. Nine hundred distinct <i>n</i> -digit numbers are to be formed using only the three digits 2, 5 and 7. The smallest value of <i>n</i> for which this is                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            | -                                                                                                                                         |  |  |  |
| possi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to be formed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [IIT 1998]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |
| (a) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                           |  |  |  |

CLICK HERE >> ( www.studentbro.in

| Solution: (b) | Since at any place, any of the digits 2, 5 and 7 can be used total number of such positive <i>n</i> -digit                               |                         |                           |                                         |                |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|-----------------------------------------|----------------|--|
|               | numbers are $3^n$ . Since we have to form 900 distinct numbers, hence $3^n \ge 900 \Rightarrow n = 7$ .                                  |                         |                           |                                         |                |  |
| Example: 18   | The number of numbers that can be formed with the help of the digits 1, 2, 3, 4, 3, 2, 1 so that odd digits always occupy odd places, is |                         |                           |                                         |                |  |
|               | (a) 24                                                                                                                                   | (b) 18                  | (c) 12                    | (d) 30                                  |                |  |
| Solution: (b) | The 4 odd digits 1,                                                                                                                      | 3, 3, 1 can be arranged | d in the 4 odd places, in | $\frac{4!}{2!2!} = 6$ ways and 3 even d | ligits 2, 4, 2 |  |

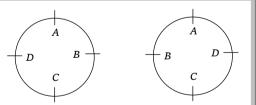
can be arranged in the three even places  $\frac{3!}{2!} = 3$  ways. Hence the required number of ways = 6 × 3 = 18.

# **5.8 Circular Permutations**

So far we have been considering the arrangements of objects in a line. Such permutations are known as linear permutations.

Instead of arranging the objects in a line, if we arrange them in the form of a circle, we call them, circular permutations.

In circular permutations, what really matters is the position of an object relative to the others.


Thus, in circular permutations, we fix the position of the one of the objects and then arrange the other objects in all possible ways.

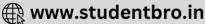
There are two types of circular permutations :

(i) The circular permutations in which clockwise and the anticlockwise arrangements give rise to different permutations, e.g. Seating arrangements of persons round a table.

(ii) The circular permutations in which clockwise and the anticlockwise arrangements give rise to same permutations, e.g. arranging some beads to form a necklace.

Look at the circular permutations, given below :




ce. They have been arranged in Suppose A, B, C, D ar clockwise and anticlockwise directions in the first and second arrangements respectively.

Now, if the necklace in the first arrangement be given a turn, from clockwise to anticlockwise, we obtain the second arrangement. Thus, there is no difference between the above two arrangements.

(1) Difference between clockwise and anticlockwise arrangement : If anticlockwise and clockwise order of arrangement are not distinct e.g., arrangement of beads in a necklace, arrangement of flowers in garland etc. then the number of circular permutations of *n* distinct items is  $\frac{(n-1)!}{2}$ 

**CLICK HERE** 

# (2) Theorem on circular permutations



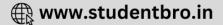
**Theorem 1 :** The number of circular permutations of n different objects is (n-1)!

**Theorem 2 :** The number of ways in which *n* persons can be seated round a table is (n-1)!

**Theorem 3 :** The number of ways in which *n* different beads can be arranged to form a necklace, is  $\frac{1}{2}(n-1)!$ .

*Wole* :  $\Box$  When the positions are numbered, circular arrangement is treated as a linear arrangement.

 $\square$  In a linear arrangement, it does not make difference whether the positions are numbered or not.


| Example: 19          | In how many ways a garland can be made from exactly 10 flowers [MP PET 1984]                                                                                                                                             |                                                                                                                                |                            |                                                                                           |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
|                      | (a) 10 !                                                                                                                                                                                                                 | (b) 9 !                                                                                                                        | (c) 2 (9!)                 | (d) $\frac{9!}{2}$                                                                        |  |  |  |  |
| Solution: (d)        | A garland can be made                                                                                                                                                                                                    | garland can be made from 10 flowers in $\frac{1}{2}(9!)$ ways [:: <i>n</i> flower's garland can be made in $\frac{1}{2}(n-1)!$ |                            |                                                                                           |  |  |  |  |
|                      | ways]                                                                                                                                                                                                                    | vays]                                                                                                                          |                            |                                                                                           |  |  |  |  |
| Example: 20          | In how many ways can                                                                                                                                                                                                     | In how many ways can 5 boys and 5 girls sit in a circle so that no boys sit together                                           |                            |                                                                                           |  |  |  |  |
|                      | (a) 5! × 5!                                                                                                                                                                                                              | (b) 4! × 5 !                                                                                                                   | (c) $\frac{5!\times5!}{2}$ | (d) None of these                                                                         |  |  |  |  |
| Solution: (b)        | Since total number of ways in which boys can occupy any place is $(5-1)!=4!$ and the 5 girls can be sit accordingly in 5! ways. Hence required number of ways are $4! \times 5!$ .                                       |                                                                                                                                |                            |                                                                                           |  |  |  |  |
| Example: 21          | The number of ways in which 5 beads of different colours form a necklace is                                                                                                                                              |                                                                                                                                |                            |                                                                                           |  |  |  |  |
|                      | (a) 12                                                                                                                                                                                                                   | (b) 24                                                                                                                         | (c) 120                    | (d) 60                                                                                    |  |  |  |  |
| <b>Solution:</b> (a) | The number of ways ir necklace are                                                                                                                                                                                       | The number of ways in which 5 beads of different colours can be arranged in a circle to form necklace are                      |                            |                                                                                           |  |  |  |  |
|                      | = (5-1)! = 4!.                                                                                                                                                                                                           |                                                                                                                                |                            |                                                                                           |  |  |  |  |
|                      | But the clockwise and anticlockwise arrangement are not different (because when the necklace is turned over one gives rise to another). Hence the total number of ways of arranging the beads = $\frac{1}{2}(4!) = 12$ . |                                                                                                                                |                            |                                                                                           |  |  |  |  |
| Example: 22          | The number of ways in round table so that the t                                                                                                                                                                          |                                                                                                                                |                            | nittee can be seated around a                                                             |  |  |  |  |
|                      | (a) 480                                                                                                                                                                                                                  | (b) 600                                                                                                                        | (c) 720                    | (d) 840                                                                                   |  |  |  |  |
| Solution: (a)        | together and as such th                                                                                                                                                                                                  | the 2 female are to be a trangement will be ${}^{5}P_{2}$                                                                      | rranged in five empty se   | ow no two female are to sit<br>ats between two consecutive<br>theorem the total number of |  |  |  |  |

# Combinations

# 5.9 Definition

Each of the different groups or selections which can be formed by taking some or all of a number of objects, irrespective of their arrangements, is called a combination.

Get More Learning Materials Here : 📕



Suppose we want to select two out of three persons A, B and C.

We may choose *AB* or *BC* or *AC*.

Clearly, *AB* and *BA* represent the same selection or group but they give rise to different arrangements.

Clearly, in a group or selection, the order in which the objects are arranged is immaterial.

**Notation:** The number of all combinations of *n* things, taken *r* at a time is denoted by  $C(n,r) = n^n C_n \operatorname{cr}^{(n)}$ 

C(n,r) or  ${}^{n}C_{r}$  or  $\binom{n}{r}$ .

(1) **Difference between a permutation and combination**: (i) In a combination only selection is made whereas in a permutation not only a selection is made but also an arrangement in a definite order is considered.

(ii) In a combination, the ordering of the selected objects is immaterial whereas in a permutation, the ordering is essential. For example *A*, *B* and *B*, *A* are same as combination but different as permutations.

(iii) Practically to find the permutation of n different items, taken r at a time, we first select r items from n items and then arrange them. So usually the number of permutations exceeds the number of combinations.

(iv) Each combination corresponds to many permutations. For example, the six permutations *ABC*, *ACB*, *BCA*, *BAC*, *CBA* and *CAB* correspond to the same combination *ABC*.

*Mole* : Generally we use the word 'arrangements' for permutations and word "selection" for combinations.

# **5.10 Number of Combinations without Repetition**

The number of combinations (selections or groups) that can be formed from *n* different objects taken  $r(0 \le r \le n)$  at a time is  ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ 

Let the total number of selections (or groups) = x. Each group contains r objects, which can be arranged in r ! ways. Hence the number of arrangements of r objects =  $x \times (r!)$ . But the number of arrangements =  ${}^{n}P_{r}$ .

$$\Rightarrow x \times (r!) = {^n}P_r \Rightarrow x = \frac{{^n}P_r}{r!} \Rightarrow x = \frac{n!}{r!(n-r)!} = {^n}C_r.$$

# Important Tips

CLICK HERE

>>

$${}^{\mathscr{F}} {}^{n}C_{0} = {}^{n}C_{n} = 1, {}^{n}C_{1} = n$$

$${}^{\mathscr{F}} {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

$${}^{\mathscr{F}} {}^{n}. {}^{n-1}C_{r-1} = (n-r+1)^{n}C_{r-1}$$

 $\mathcal{P}$  If n is odd then the greatest value of  ${}^{n}C_{r}$  is

🕀 www.studentbro.in

$$\overset{\circ}{=} \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

$$\overset{\circ}{=} {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}$$

|                                       |                                                                                             |                                                                                | Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rmutations and Co                                  | ombinations <b>215</b>        |
|---------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| $\mathbb{P}$ $2n+1 C_0 + 2n$          | $^{n+1}C_1 + ^{2n+1}C_2 + \dots + ^{2n+1}C_n =$                                             | $= 2^{2n}$                                                                     | $\mathfrak{F}^{n}C_{n}+^{n+1}C_{n}+^{n+2}C_{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_n + {}^{n+3}C_n + \dots + {}^{2n-1}C_n =$       | $=$ <sup>2n</sup> $C_{n+1}$   |
| Note : [                              | Number of co                                                                                | ombinations of <i>n</i>                                                        | ı dissimilar t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hings taken a                                      | all at a time                 |
|                                       | $\frac{n!}{(n-n)!} = \frac{1}{0!} = 1$ , (:: 0!=                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
| $C_n = \frac{1}{n!}$                  | $\overline{(n-n)!} = \overline{0!} = 1$ , (. 0.1-                                           | = 1).                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
| Example: 23                           | If ${}^{15}C_{3r} = {}^{15}C_{r+3}$ , then t                                                | the value of <i>r</i> is                                                       | [IIT 1967; Raja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sthan PET 1991; MP                                 | PET 1998; Karnataka           |
|                                       | CET 1996]                                                                                   |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
| · · · · · · · · · · · · · · · · · · · | (a) 3                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) 8                                              |                               |
| Solution: (a)                         | $^{15}C_{3r} = ^{15}C_{r+3} \implies {}^{15}C_{15-3}$                                       | $_{3r} = {}^{15}C_{r+3} \implies 15 - 3r = r + 3$                              | $3 \Rightarrow r = 3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                               |
| Example: 24                           | $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} =$                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | [MP PET 1984]                 |
|                                       | (a) $\frac{n-r}{r}$                                                                         | (b) $\frac{n+r-1}{r}$                                                          | (c) $\frac{n-r+1}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) $\frac{n-n}{n}$                                | $\frac{r-1}{r}$               |
| Solution: (c)                         | $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n!}{\frac{r!(n-r)!}{\frac{n!}{(r-1)!(n-r+1)!}}}$ | $\frac{n!}{r!(n-r)!} \times \frac{(r-1)!(n-r)!}{n!}$                           | $\frac{(r+1)!}{r(r-1)!} = \frac{(n-r+1)(r-1)}{r(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r-1)!(r$ | $\frac{(n-r)!(n-r)!}{(n-r)!} = \frac{(n-r+1)!}{r}$ | <u>)</u> .                    |
| Example: 25                           | If ${}^{n+1}C_3 = 2^n C_2$ , then <i>n</i>                                                  | 1 =                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | [MP PET 2000]                 |
|                                       | (a) 3                                                                                       | (b) 4                                                                          | (c) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) 6                                              |                               |
| Solution: (c)                         | $^{n+1}C_3 = 2.^n C_2$                                                                      |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
|                                       | $\Rightarrow \frac{(n+1)!}{3!(n-2)!} = 2 \cdot \frac{n!}{2!(n-2)!}$                         | $\frac{n+1}{3!} \Rightarrow \frac{n+1}{3!} = \frac{2}{2!} \Rightarrow n+1 = 0$ | $6 \Rightarrow n = 5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                               |
| Example: 26                           | If ${}^{n}C_{r-1} = 36$ , ${}^{n}C_{r} = 84$                                                | and ${}^{n}C_{r+1} = 126$ then the                                             | value of <i>r</i> is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [11]                                               | T 1979; Pb. CET 1993;         |
|                                       | DCE 1999; MP PET 2001                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | -                             |
|                                       | (a) 1                                                                                       | (b) 2                                                                          | (c) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) Non                                            | ne of these                   |
| <b>Solution:</b> (c)                  | Here $\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{36}{84}$ and                                | $\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{84}{126}$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
|                                       |                                                                                             | 10r = 6; on solving we get                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <b>-</b>                                         |                               |
| Example: 27                           | In a conference of 8<br>number of shake hand                                                | B persons, if each persons<br>ds shall be                                      | on shake hand wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | th the other one o                                 | only, then the total          |
|                                       | (a) 64                                                                                      | (b) 56                                                                         | (c) 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) 28                                             |                               |
| Solution: (d)                         |                                                                                             | ke hands when each pe                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | ice only = ${}^{8}C_{2} = 28$ |
| ways.                                 |                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
| Example: 28                           | -                                                                                           | consonants and 3 vowe                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
| (1-)                                  | (a) 75000                                                                                   | (b) 756000                                                                     | (c) 75600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) Non                                            | ne of these                   |
| Solution: (b)                         |                                                                                             | words = ${}^{6}C_4 \times {}^{5}C_3 \times 7! =$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
|                                       |                                                                                             | le in ${}^{6}C_{4} \times {}^{5}C_{3}$ while th                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
| Example: 29                           | vacancies are reserve                                                                       | there are 25 candidate<br>ed for scheduled caste ca<br>selection can be made   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                               |
|                                       |                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ł                                                  | [Rajasthan PET 1981]          |
|                                       | (a) ${}^{5}C_{3} \times {}^{22}C_{9}$                                                       | <b>(b)</b> $^{22}C_9 - ^5C_3$                                                  | (c) $^{22}C_3 + ^5C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) Non                                            | ne of these                   |

Get More Learning Materials Here : 💻

**Solution:** (a) The selection can be made in  ${}^{5}C_{3} \times {}^{22}C_{9}$  [since 3 vacancies filled from 5 candidates in  ${}^{5}C_{3}$  ways and now remaining candidates are 22 and remaining seats are 9, then remaining vacancies filled by  ${}^{22}C_{9}$  ways. Hence total number of ways  ${}^{5}C_{3} \times {}^{22}C_{9}$ .

# 5.11 Number of Combinations with Repetition and All Possible Selections

(1) The number of combinations of n distinct objects taken r at a time when any object may be repeated any number of times.

= coefficient of  $x^r$  in  $(1 + x + x^2 + \dots + x^r)^n$  = coefficient of  $x^r$  in  $(1 - x)^{-n} = x^{n+r-1}C_r$ 

(2) The total number of ways in which it is possible to form groups by taking some or all of n things at a time is  $2^n - 1$ .

(3) The total number of ways in which it is possible to make groups by taking some or all out of  $n = (n_1 + n_2 + ...)$  things, when  $n_1$  are alike of one kind,  $n_2$  are alike of second kind, and so on is  $\{(n_1 + 1)(n_2 + 1)....\} - 1$ .

(4) The number of selections of *r* objects out of *n* identical objects is 1.

(5) Total number of selections of zero or more objects from n identical objects is n + 1.

(6) The number of selections taking at least one out of  $a_1 + a_2 + a_3 + \dots + a_n + k$  objects, where  $a_1$  are alike (of one kind),  $a_2$  are alike (of second kind) and so on..... $a_n$  are alike (of n<sup>th</sup> kind) and *k* are distinct =  $[(a_1 + 1)(a_2 + 1)(a_3 + 1).....(a_n + 1)]2^k - 1$ .

| Example: 30   | There are 10 lamps in a hall. Each one of them can be switched on independently. The number of ways in which the hall can be illuminated is                                               |                           |                                                        |                                                                               |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
|               | (a) 10 <sup>2</sup>                                                                                                                                                                       | (b) 1023                  | (c) $2^{10}$                                           | (d) 10 !                                                                      |  |  |
| Solution: (b) | Number of ways are = 2                                                                                                                                                                    | $2^{10} - 1 = 1023$       |                                                        |                                                                               |  |  |
|               | [- 1 corresponds to none                                                                                                                                                                  | e of the lamps is being s | witched on.]                                           |                                                                               |  |  |
| Example: 31   | 10 different letters of English alphabet are given. Out of these letters, words of 5 letters are formed.<br>How many words are formed when atleast one letter is repeated                 |                           |                                                        |                                                                               |  |  |
|               | (a) 99748                                                                                                                                                                                 | (b) 98748                 | (c) 96747                                              | (d) 97147                                                                     |  |  |
| Solution: (a) | <b>Ition:</b> (a) Number of words of 5 letters in which letters have been repeated any times = $10^5$<br>But number of words on taking 5 different letters out of $10 = {}^{10}C_5 = 252$ |                           |                                                        |                                                                               |  |  |
|               |                                                                                                                                                                                           |                           |                                                        |                                                                               |  |  |
|               | $\therefore$ Required number of words = $10^5 - 252 = 99748$ .                                                                                                                            |                           |                                                        |                                                                               |  |  |
| Example: 32   | A man has 10 friends. In how many ways he can invite one or more of them to a party                                                                                                       |                           |                                                        |                                                                               |  |  |
|               | (a) 10 !                                                                                                                                                                                  | (b) $2^{10}$              | (c) 10!-1                                              | (d) $2^{10} - 1$                                                              |  |  |
| Solution: (d) | Required number of friend = $2^{10} - 1$ (Since the case that no friend be invited <i>i.e.</i> , ${}^{10}C_0$ is excluded)                                                                |                           |                                                        |                                                                               |  |  |
| Example: 33   | Numbers greater than 1000 but not greater than 4000 which can be formed with the digits 0, 1, 2, 3, 4 (repetition of digits is allowed), are                                              |                           |                                                        |                                                                               |  |  |
|               | (a) 350                                                                                                                                                                                   | (b) 375                   | (c) 450                                                | (d) 576                                                                       |  |  |
| Solution: (b) | •                                                                                                                                                                                         |                           | qual to 4000 will be of 4<br>in each of remaining plac | digits and will have either 1 ces.                                            |  |  |
|               |                                                                                                                                                                                           |                           |                                                        | pers. Similarly third place can<br>e will be $5 \times 5 \times 5 = 125$ ways |  |  |

**CLICK HERE** 

🕀 www.studentbro.in

🕀 www.studentbro.in

in which 1 will be in first place but this include 1000 also hence there will be 124 numbers having 1 in the first place. Similarly 125 for each 2 or 3. One number will be in which 4 in the first place and *i.e.*, 4000. Hence the required numbers are 124 + 125 + 125 + 1 = 375 ways.

# 5.12 Conditional Combinations

(1) The number of ways in which r objects can be selected from n different objects if k particular objects are

- (i) Always included =  ${}^{n-k}C_{r-k}$  (ii) Never included =  ${}^{n-k}C_r$
- (2) The number of combinations of *n* objects, of which *p* are identical, taken *r* at a time is

$$= {}^{n-p}C_r + {}^{n-p}C_{r-1} + {}^{n-p}C_{r-2} + \dots + {}^{n-p}C_0 \text{ if } r \le p \text{ and}$$

 $= {}^{n-p}C_r + {}^{n-p}C_{r-1} + {}^{n-p}C_{r-2} + \dots + {}^{n-p}C_{r-p} \text{ if } r > p$ 

Example: 34 In the 13 cricket players 4 are bowlers, then how many ways can form a cricket team of 11 players in which at least 2 bowlers included (a) 55 (b) 72 (c) 78 (d) None of these The number of ways can be given as follows: Solution: (c) 2 bowlers and 9 other players =  ${}^{4}C_{2} \times {}^{9}C_{9}$ ; 3 bowlers and 8 other players =  ${}^{4}C_{3} \times {}^{9}C_{8}$ 4 bowlers and 7 other players =  ${}^{4}C_{4} \times {}^{9}C_{7}$ Hence required number of ways =  $6 \times 1 + 4 \times 9 + 1 \times 36 = 78$ . In how many ways a team of 10 players out of 22 players can be made if 6 particular players are Example: 35 always to be included and 4 particular players are always excluded (b)  ${}^{18}C_3$ (a)  ${}^{22}C_{10}$ (c)  ${}^{12}C_4$ (d)  ${}^{18}C_4$ 6 particular players are always to be included and 4 are always excluded, so total number of **Solution:** (c) selection, now 4 players out of 12. Hence number of ways =  ${}^{12}C_4$ . **Example : 36** In how many ways can 6 persons to be selected from 4 officers and 8 constables, if at least one officer is to be included [Roorkee 1985; MP PET 2001] (b) 672 (c) 896 (d) None of these (a) 224

Solution: (c) Required number of ways =  ${}^{4}C_{1} \times {}^{8}C_{5} + {}^{4}C_{2} \times {}^{8}C_{4} + {}^{4}C_{3} \times {}^{8}C_{3} + {}^{4}C_{4} \times {}^{8}C_{2} = 4 \times 56 + 6 \times 70 + 4 \times 56 + 1 \times 28$ = 896.

## 5.13 Division into Groups

**Case I**: (1) The number of ways in which *n* different things can be arranged into *r* different groups is  ${}^{n+r-1}P_n$  or  $n ! {}^{n-1}C_{r-1}$  according as blank group are or are not admissible.

(2) The number of ways in which n different things can be distributed into r different group is

CLICK HERE

$$r^{n} - {}^{r}C_{1}(r-1)^{n} + {}^{r}C_{2}(r-2)^{n} - \dots + (-1)^{n-1} {}^{n}C_{r-1}$$
 or Coefficient of  $x^{n}$  is  $n! (e^{x} - 1)^{r}$ 

Here blank groups are not allowed.

(3) Number of ways in which  $m \times n$  different objects can be distributed equally among n persons (or numbered groups) = (number of ways of dividing into groups) × (number of groups) ! =  $\frac{(mn)!n!}{(m!)^n n!} = \frac{(mn)!}{(m!)^n}$ .

**Case II :** (1) The number of ways in which (m+n) different things can be divided into two

groups which contain *m* and *n* things respectively is,  ${}^{m+n}C_m \cdot {}^nC_n = \frac{(m+n)!}{m!n!}, m \neq n$ .

**Corollary:** If m = n, then the groups are equal size. Division of these groups can be given by two types.

**Type I : If order of group is not important :** The number of ways in which 2*n* different things can be divided equally into two groups is  $\frac{(2n)!}{2!(n!)^2}$ 

**Type II : If order of group is important :** The number of ways in which 2n different things can be divided equally into two distinct groups is  $\frac{(2n)!}{2!(n!)^2} \times 2! = \frac{2n!}{(n!)^2}$ 

(2) The number of ways in which (m + n + p) different things can be divided into three groups which contain m, n and p things respectively is  ${}^{m+n+p}C_m . {}^{n+p}C_n . {}^pC_p = \frac{(m+n+p)!}{m!n!n!}, m \neq n \neq p$ 

**Corollary:** If m = n = p, then the groups are equal size. Division of these groups can be given by two types.

**Type I : If order of group is not important :** The number of ways in which 3*p* different things can be divided equally into three groups is  $\frac{(3p)!}{3!(p!)^3}$ 

**Type II : If order of group is important :** The number of ways in which 3*p* different things can be divided equally into three distinct groups is  $\frac{(3p)!}{3!(p!)^3}t3!=\frac{(3p)!}{(p!)^3}$ 

*Note*: If order of group is not important : The number of ways in which *mn* different things can be divided equally into *m* groups is  $\frac{mn!}{(n!)^m m!}$ 

□ If order of group is important: The number of ways in which *mn* different things can be divided equally into *m* distinct groups is  $\frac{(mn)!}{(n!)^m m!} \times m! = \frac{(mn)!}{(n!)^m}$ .

CLICK HERE

🕀 www.studentbro.in

**Example: 37** In how many ways can 5 prizes be distributed among four students when every student can take one or more prizes

[BIT Ranchi 1990; Rajasthan PET 1988, 97](a) 1024(b) 625(c) 120(d) 60Solution: (a)The required number of ways =  $4^5 = 1024$ [since each prize can be distributed by 4 ways]Example: 38The number of ways in which 9 persons can be divided into three equal groups is<br/>(a) 1680(b) 840(c) 560(d) 280

| Solution: (d) | Total ways = $\frac{9!}{(3!)^3} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4}{3 \times 2 \times 3 \times 2 \times 3 \times 2} = 280.$                                                                                                                                                         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example: 39   | The number of ways dividing 52 cards amongst four players equally, are [IIT 1979]                                                                                                                                                                                                                       |
|               | (a) $\frac{52!}{(13!)^4}$ (b) $\frac{52!}{(13!)^2 4!}$ (c) $\frac{52!}{(12!)^4 4!}$ (d) None of these                                                                                                                                                                                                   |
| Solution: (a) | Required number of ways = ${}^{52}C_{13} \times {}^{39}C_{13} \times {}^{26}C_{13} \times {}^{13}C_{13} = \frac{52!}{39!13!} \times \frac{39!}{26!13!} \times \frac{26!}{13!13!} \times \frac{13!}{13!} = \frac{52!}{(13!)^4}$ .                                                                        |
| Example: 40   | A question paper is divided into two parts <i>A</i> and <i>B</i> and each part contains 5 questions. The number of ways in which a candidate can answer 6 questions selecting at least two questions from each part is (a) 80 (b) 100 (c) 200 (d) None of these                                         |
| Solution: (c) | The number of ways that the candidate may select<br>2 questions from A and 4 from $B = {}^{5}C_{2} \times {}^{5}C_{4}$ ; 3 questions form A and 3 from $B = {}^{5}C_{3} \times {}^{5}C_{3}$<br>4 questions from A and 2 from $B = {}^{5}C_{4} \times {}^{5}C_{2}$ . Hence total number of ways are 200. |
|               |                                                                                                                                                                                                                                                                                                         |

# 5.14 Derangement

Any change in the given order of the things is called a derangement.

If n things form an arrangement in a row, the number of ways in which they can be

deranged so that no one of them occupies its original place is  $n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \cdot \frac{1}{n!}\right)$ .

Example: 41There are four balls of different colours and four boxes of colurs same as those of the balls. The<br/>number of ways in which the balls, one in each box, could be placed such that a ball doesn't go to box<br/>of its own colour is[IIT 1992](a) 8(b) 7(c) 9(d) None of these

**Solution:** (c) Number of derangement are = 4 !  $\left\{\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!}\right\} = 12 - 4 + 1 = 9$ .

(Since number of derangements in such a problem is given by  $n!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!}+\frac{1}{4!$ 

# 5.15 Some Important Results for Geometrical Problems

(1) Number of total different straight lines formed by joining the *n* points on a plane of which *m* (< *n*) are collinear is  ${}^{n}C_{2} - {}^{m}C_{2} + 1$ .

(2) Number of total triangles formed by joining the *n* points on a plane of which *m* (< *n*) are collinear is  ${}^{n}C_{3} - {}^{m}C_{3}$ .

(3) Number of diagonals in a polygon of *n* sides is  ${}^{n}C_{2} - n$ .

(4) If *m* parallel lines in a plane are intersected by a family of other *n* parallel lines. Then total number of parallelograms so formed is  ${}^{m}C_{2} \times {}^{n}C_{2}$  *i.e*  $\frac{mn(m-1)(n-1)}{4}$ 

(5) Given n points on the circumference of a circle, then

(i) Number of straight lines =  ${}^{n}C_{2}$  (ii) Number of triangles =  ${}^{n}C_{3}$  (iii) Number of quadrilaterals =  ${}^{n}C_{4}$ .

(6) If *n* straight lines are drawn in the plane such that no two lines are parallel and no three lines are concurrent. Then the number of part into which these lines divide the plane is =  $1 + \Sigma n$ .



(7) Number of rectangles of any size in a square of  $n \times n$  is  $\sum_{r=1}^{n} r^3$  and number of squares of any size is  $\sum_{r=1}^{n} r^2$ .

(8) In a rectangle of  $n \times p$  (n < p) number of rectangles of any size is  $\frac{np}{4}(n+1)(p+1)$  and number of squares of any size is  $\sum_{n=1}^{n}(n+1-r)(p+1-r)$ .

|                 |                                                                                                                 | 7-1                                                                  |                        |                              |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|------------------------------|--|--|--|--|
| Example: 42     | The number of diagonals                                                                                         | s in a octagon will be                                               |                        | [MP PET 1984; Pb. CET 1989,  |  |  |  |  |
|                 | 2000]                                                                                                           |                                                                      |                        |                              |  |  |  |  |
|                 | (a) 28                                                                                                          | (b) 20                                                               | (c) 10                 | (d) 16                       |  |  |  |  |
| Solution: (b)   | Number of diagonals = ${}^{8}C_{2} - 8 = 28 - 8 = 20$ .                                                         |                                                                      |                        |                              |  |  |  |  |
| Example: 43     | The number of straight l                                                                                        | The number of straight lines joining 8 points on a circle is         |                        |                              |  |  |  |  |
|                 | (a) 8                                                                                                           | (b) 16                                                               | (c) 24                 | (d) 28                       |  |  |  |  |
| Solution: (d)   | Number of straight line = ${}^{8}C_{2}$ = 28.                                                                   |                                                                      |                        |                              |  |  |  |  |
| Example: 44     | The number of triangles that can be formed by choosing the vertices from a set of 12 points, seven of           |                                                                      |                        |                              |  |  |  |  |
|                 | which lie on the same straight line, is [Roorkee 1989, 2000; BIT Ranchi 1989; MP PET 1995; Pb. CET 1997; DCE 20 |                                                                      |                        |                              |  |  |  |  |
|                 | (a) 185                                                                                                         | (b) 175                                                              | (c) 115                | (d) 105                      |  |  |  |  |
| Solution: (a)   | Required number of ways = ${}^{12}C_3 - {}^7C_3 = 220 - 35 = 185$ .                                             |                                                                      |                        |                              |  |  |  |  |
| Example: 45     | Out of 18 points in a p                                                                                         | plane, no three are in                                               | the same straight line | except five points which are |  |  |  |  |
|                 | collinear. The number of (i) straight lines (ii) triangles which can be formed by joining them                  |                                                                      |                        |                              |  |  |  |  |
|                 | (i) (a) 140                                                                                                     | (b) 142                                                              | (c) 144                | (d) 146                      |  |  |  |  |
|                 | (ii) (a) 816                                                                                                    | (b) 806                                                              | (c) 800                | (d) 750                      |  |  |  |  |
| Solution: (c, b | )Out of 18 points, 5 are co                                                                                     | ollinear                                                             |                        |                              |  |  |  |  |
|                 | (i) Number of straight li                                                                                       |                                                                      | -10 + 1 = 144          |                              |  |  |  |  |
|                 | (ii) Number of triangles                                                                                        | (ii) Number of triangles $= {}^{18}C_3 - {}^5C_3 = 816 - 10 = 806$ . |                        |                              |  |  |  |  |

# 5.16 Multinomial Theorem

Let  $x_1, x_2, \dots, x_m$  be integers. Then number of solutions to the equation  $x_1 + x_2 + \dots + x_m = n$ .....(i)

Subject to the condition  $a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2, \dots, a_m \le x_m \le b_m$  .....(ii)

is equal to the coefficient of  $x^n$  in

 $(x^{a_1} + x^{a_1+1} + \dots + x^{b_1})(x^{a_2} + x^{a_2+1} + \dots + x^{b_2})\dots(x^{a_m} + x^{a_{m+1}} + \dots + x^{b_m})$ 

.....(iii)

This is because the number of ways, in which sum of m integers in (i) equals n, is the same as the number of times  $x^n$  comes in (iii).

(1) Use of solution of linear equation and coefficient of a power in expansions to find the number of ways of distribution : (i) The number of integral solutions of  $x_1 + x_2 + x_3 + \dots + x_r = n$  where  $x_1 \ge 0, x_2 \ge 0, \dots, x_r \ge 0$  is the same as the number of ways to distribute *n* identical things among *r* persons.

**CLICK HERE** 

This is also equal to the coefficient of  $x^n$  in the expansion of  $(x^0 + x^1 + x^2 + x^3 + ....)^r$ 

= coefficient of 
$$x^n$$
 in  $\left(\frac{1}{1-x}\right)^r$  = coefficient of  $x^n$  in  $(1-x)^{-r}$ 



$$= \text{ coefficient of } x^{n} \text{ in } \left\{ 1 + rx + \frac{r(r+1)}{2!}x^{2} + \dots + \frac{r(r+1)(r+2)\dots(r+n-1)}{n!}x^{n} + \dots \right.$$
$$= \frac{r(r+1)(r+2)\dots(r+n-1)}{n!} = \frac{(r+n-1)!}{n!(r-1)!} = {n+r-1 \choose r-1}C_{r-1}$$

(ii) The number of integral solutions of  $x_1 + x_2 + x_3 + \dots + x_r = n$  where  $x_1 \ge 1, x_2 \ge 1, \dots, x_r \ge 1$  is same as the number of ways to distribute *n* identical things among *r* persons each getting at least 1. This also equal to the coefficient of  $x^n$  in the expansion of  $(x^1 + x^2 + x^3 + \dots)^r$ 

$$= \text{ coefficient of } x^{n} \text{ in } \left(\frac{x}{1-x}\right)^{r} = \text{ coefficient of } x^{n} \text{ in } x^{r}(1-x)^{-r}$$

$$= \text{ coefficient of } x^{n} \text{ in } x^{r} \left\{1 + rx + \frac{r(r+1)}{2!}x^{2} + \dots + \frac{r(r+1)(r+2)\dots(r+n-1)}{n!}x^{n} + \dots\right\}$$

$$= \text{ coefficient of } x^{n-r} \text{ in } \left\{1 + rx + \frac{r(r+1)}{2!}x^{2} + \dots + \frac{r(r+1)(r+2)\dots(r+n-1)}{n!}x^{n} + \dots\right\}$$

$$= \frac{r(r+1)(r+2)\dots(r+n-r-1)}{(n-r)!} = \frac{r(r+1)(r+2)\dots(n-1)}{(n-r)!} = \frac{(n-1)!}{(n-r)!(r-1)!} = {n-1 \choose r-1}C_{r-1}.$$

Example: 46 A student is allowed to select utmost *n* books from a collection of (2*n*+1) books. If the total number of ways in which he can select one book is 63, then the value of *n* is [IIT 1987; Rajasthan PET 1999]
(a) 2
(b) 3
(c) 4
(d) None of these
Solution: (b) Since the student is allowed to select utmost *n* books out of (2*n*+1) books. Therefore in order to select one book he has the choice to select one, two, three,....., *n* books.

Thus, if T is the total number of ways of selecting one book then  $T = {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n = 63$ .

Again the sum of binomial coefficients

$${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n + {}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + \dots + {}^{2n+1}C_{2n+1} = (1+1)^{2n+1} = 2^{2n+1}$$
  
or, 
$${}^{2n+1}C_0 + 2({}^{2n-1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n) + {}^{2n+1}C_{2n+1} = 2^{2n+1}$$
  
$$\Rightarrow 1 + 2(T) + 1 = 2^{2n+1} \Rightarrow 1 + T = \frac{2^{2n+1}}{2} = 2^{2n} \Rightarrow 1 + 63 = 2^{2n} \Rightarrow 2^6 = 2^{2n} \Rightarrow n = 3.$$

**Example: 47** If x, y and r are positive integers, then  ${}^{x}C_{r} + {}^{x}C_{r-1} + {}^{y}C_{1} + {}^{x}C_{r-2} + \dots + {}^{y}C_{r} =$ 

[Karnataka CET 1993; Rajasthan PET 2001]

🕀 www.studentbro.in

(a) 
$$\frac{x!y!}{r!}$$
 (b)  $\frac{(x+y)!}{r!}$  (c)  $x+yC_r$  (d)  $xyC_r$ 

**Solution:** (c) The result  $^{x+y}C_r$  is trivially true for r=1,2 it can be easily proved by the principle of mathematical induction that the result is true for r also.

# 5.17 Number of Divisors

Let  $N = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \cdot \dots \cdot p_k^{\alpha_k}$ , where  $p_1, p_2, p_3, \dots \cdot p_k$  are different primes and  $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_k$  are natural numbers then :

(1) The total number of divisors of N including 1 and N is =  $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)...(\alpha_k + 1)$ 

**CLICK HERE** 

(2) The total number of divisors of N excluding 1 and N is =  $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)....(\alpha_k + 1) - 2$ 

(3) The total number of divisors of N excluding 1 or N is =  $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)....(\alpha_k + 1) - 1$ 

(4) The sum of these divisors is = $(p_1^0 + p_2^1 + p_3^2 + \dots + p_1^{\alpha_1})(p_2^0 + p_2^1 + p_2^2 + \dots + p_2^{\alpha_2})\dots(p_k^0 + p_k^1 + p_k^2 + \dots + p_k^{\alpha_k})$ 

(5) The number of ways in which N can be resolved as a product of two factors is

$$\left| \frac{1}{2} (\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1), \text{ If } N \text{ is not a perfect square} \right| \frac{1}{2} [(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1) + 1], \text{ If } N \text{ is a perfect square} \right|$$

(6) The number of ways in which a composite number N can be resolved into two factors which are relatively prime (or co-prime) to each other is equal to  $2^{n-1}$  where n is the number of different factors in N.

# Important Tips

All the numbers sum of whose digits are divisible by 3, is divisible by 3 e.g. 534. Sum of the digits is 12, which are divisible by 3, and hence 534 is also divisible by 3.

All those numbers whose last two-digit number is divisible by 4 are divisible by 4 e.g. 7312, 8936, are such that 12, 36 are divisible by 4 and hence the given numbers are also divisible by 4.

All those numbers, which have either 0 or 5 as the last digit, are divisible by 5.

*All those numbers, which are divisible by 2 and 3 simultaneously, are divisible by 6. e.g., 108, 756 etc.* 

All those numbers whose last three-digit number is divisible by 8 are divisible by 8.

*All those numbers sum of whose digit is divisible by 9 are divisible by 9.* 

*All those numbers whose last two digits are divisible by 25 are divisible by 25 e.g., 73125, 2400 etc.* 

| Example: 48   | The number of divisors of 9600 including 1 and 9600 are                                                                              |        |        |        |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--|--|
|               | (a) 60                                                                                                                               | (b) 58 | (c) 48 | (d) 46 |  |  |
| Solution: (c) | Since 9600 = $2^7 \times 3^1 \times 5^2$                                                                                             |        |        |        |  |  |
|               | Hence number of divisors = $(7 + 1)(1 + 1)(2 + 1) = 48$ .                                                                            |        |        |        |  |  |
| Example: 49   | Number of divisors of $n = 38808$ (except 1 and <i>n</i> ) is                                                                        |        |        |        |  |  |
|               | (a) 70                                                                                                                               | (b) 68 | (c) 72 | (d) 74 |  |  |
| Solution: (a) | Since $38808 = 8 \times 4851 = 8 \times 9 \times 539 = 8 \times 9 \times 7 \times 7 \times 11 = 2^3 \times 3^2 \times 7^2 \times 11$ |        |        |        |  |  |
|               | So, number of divisors = (3 + 1) (2 + 1) (2 + 1) (1 + 2) - 2 = 72 - 2 = 70.                                                          |        |        |        |  |  |

\*\*\*

**CLICK HERE** 

🕀 www.studentbro.in

*All the numbers whose last digit is an even number 0, 2, 4, 6 or 8 are divisible by 2.*